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AbstracL The expansion of the Lauughlin ansatz for describing the gmund-state wavefunction for 
the fractional quantum Hall effect as a linear combination of Slater determinantal wavefunctions 
for N particles is discussed in term of the corresponding expansion of even powers of the 
Vandermonde altemant into Schur functions. Two new algorithms for computing the weliicients 
of the complete expansion are given. They appear to be substantially more eliicient than other 
methods and avoid any use of symmetric group characters. A number of examples a~ given 
and the results obtained for N = 7, 8 and 9 reviewed. The separate calculation of individual 
coefficients is also discussed. 

1. Introduction 

The theory of symmetric functions is quite old, appearing even in Newton’s Arithmetka 
Universalis. A modern account is given by Macdonald (1979) which we shall use as 
reference for matters of notation. Applications of symmetric functions to problems in 
physics abound. The Schur functions are particularly relevant to discussions of the quantum 
Hall effect (Stone 1990). Laughlin (1983) has given an ansatz describing the ground-state 
wavefunction for the fractional quantum Hall effect which involves the fractional filling of 
the lowest Landau level. There has been considerable recent interest in the expansion of 
the Laughlin wavefunction as a linear combination of Slater determinantal wavefunctions 
for N particles @unne 1993, Di Francesco e t a l  1993). 

It is found that the even powers of the Vandermonde alternating function play a key 
role in determining the coefficients of the expansion of the Laughlin wavefunction as a 
linear combination of Slater determinantal wavefunctions. Indeed, the relevant coefficients 
are directly related to the signed integer coefficients that arise in the expansion of the even 
powers of the Vandermonde alternating function into Schur functions. The problem of 
determining the expansion coefficients for increasingly large values of N is combinatorially 
explosive. 

Our principal result is the creation of two algorithms for computing the expansion 
coefficients in a more efficient manner than in hitherto stated methods and these algorithms 
entirely avoid the need for any knowledge of symmetric group characters. We give a brief 
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statement of the problem and then state the algorithms, illustrating their application by 
simple examples. Then we review some previous works concerned with the calculation of 
particular coefficients. Finally we comment on some details of our computed results. 

2. The expansion of the Laughlia wavefunction 

Laughlin (1983) describes the fractional quantum Hall effect in terms of a (unnormalized) 
wavefunction 

N N 

icj ;=I 
~ ' ; l w ~ ~ ~ ~ ( z 1 ,  . . . . z#) = n(zi - zj)b+l exp ( - 1 c ~zi 12) (1) 

where z = x+iy and m is an integer corresponding to states of fractional filling 1/(2m+ 1) 
of the lowest Landau level. The Laughlin wavefunction has a fixed angular momentum 

J ~ ~ ~ g h l i ~  = (2m + l)$N(N - 1) (2) 

and may be expanded as a linear combination of Slater determinantal wavefunctions having 
the same angular momentum @unne 1993, Di Francesco et al 1993). 

The Vandermonde alternating function in N variables is defined as 

While v is an altemating function, an even power of v, say v", is necessarily a symmetric 
function and, hence, must be expandable in any suitable linear integral basis of symmetric 
functions such as the Schur functions 

SA(ZI.. . . , Z N )  = {AI (AI,. .. , ApI 

which are indexed, in this case, by partitions of the integer 

(4) 

n = m N ( N  - 1). (5) 

Dropping questions of normalization, we may write 

The coefficients cA are signed integers and are precisely the same integers that arise in the 
expansion of the Laughlin wavefunction as a linear combination of Slater determinants. 
Of particular interest is the determination of the expansion coefficients as the number of 
particles N increases. 

It suffices to calculate the expansion coefficients form = 1 as the coefficients for higher 
values of m can be found from these by simple application of the Littlewood-Richardson 
rule (LR rule) (cf Macdonald 1979) for the multiplication of Schur functions. The partitions 
(A), indexing the Schur functions for m = 1, are of weight N(N - I), where N is the 
number of particles (or equivalently the number of variables zi i = 1, . . . , N ) .  It is this 
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feature that makes the problem combinatorially explosive. Di Francesco ef ai (1993) have 
obtained an expression for the total number of admissible partitions as a function of N. 
While the evidence prior to our work indicated that the coefficients associated with the 
admissible partitions are all non-zero, a proof has been lacking and indeed we have found 
a counter example. 

Dunne (1993) has calculated the expansion coefficients for V 2  for up to N = 6 variables. 
His method involves expressing the elements of the Vandermonde determinant in terms of 
power-sum symmetric functions and then using the character tables of SN(N-I )  to transform 
the power sums into Schur functions. Thus, for eight variables, one already requires 
knowledge of a significant portion of the character table of S56. Both Dunne and Di 
Francesco et a1 note that the coefficients display certain symmetries but not enough to 
significantly reduce the problem for even small values of N .  We now turn to the statement 
of our expansion algorithms. 

3. Algorithm for the complete expansion 

3.1. Thefirst algorithm 
The first algorithm is based upon a simple property of the operator (acting on the space of 
polynomials C[xl, . . . , xJ) Q, which sends a monomial in n variables 2' = z? . . .zp (the 
usual order being reversed) onto the Schur function s~(z1,. . . , z,). That is 

where p,, = (n - 1, n - 2, . . . , 1,O) and V ,  = nlqicjqn(z; - z j ) .  The required property is 
as follows. 

Lemma 3.1. Q,s2,-1 = Q.. This lemma is a direct consequence of the following two 
facts: 

(i) If a polynomial f ( z l , .  . . , z,) is symmetric in Z I ,  . . . , zn then Q,(f) = f. 
This follows, for example, from the factorized form of a., as given by Lascoux and 
Schutzenberger (1983) (see also Macdonald (1991) pp 27-8). That is, if n; denotes the 
isobaric divided-difference operator f + (zif - z i + ~ u i f ) / ( z ;  - zi+l) (q being the 
transposition of zj and zi+g). then, for any reduced decomposition o = ui,uj2 . . .U!, of 
the permutation w = (n, n - 1, . . . , 2 ,  l), one has Q, = xi,ri, . . . ri, . Since a polynomial 
which is symmetric in zi and zi+l is clearly a scalar for ri, then a completely symmetric 
polynomial is also a scalar for Q.. 

(ii) One has 

This allows for the recursive computation of the Schur expansion of sequences of 
symmetric functions of the form F, = F"-IU., where Fn-l depends only on z1.. . . , zn-1 
and U. is a reasonably small factor involving the n variables which is symmetric in the 
first n - 1 ones. For example, with F, = V:, the starting point is as follows. For n = 2, 
V; = (21 - 22)' = 2: - 2 2 1 ~ 2  + zf and since it is a symmetric function 

v.=nz(v,") = S O Z - ~ S ~ I ~ S Z ~ = S Z - ~ S I I .  
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To pass to n = 3, one Writes 

v,' = nz(Zi - 32122) 

and 

v: = 5/3 (s22(zi - 3ZlZ23 . (ZI - ZS)2(22 - Z3Y) . 

The factor U3 = (ZI - Z~)~(ZZ - z#, being symmetric in z1. z2, is a scalar for the linear 
operator Qz and can be incovorated into its argument. We get 

v3" = a,(nz((z; - 3ZlZZ)(Zl - z3)2(z2 - z312)) 

= n 3 ( ( z i  - 3ZIZ2)(Zl - z3)2(22 - z 3 Y )  

(by the lemma) 

= Q3(-3z:z: + 6z:ziz3 - 3z:zzz: + 4z:z:23 - 11zIz2z3 2 2 2  + 62:zzz: + ZIZ~Z:  

-+ 4ZiZ22: - 3ZiZ22; f Z:Z$ - 2ZiZ$Ze + ZiZ: -~2ZiZ: + Z x )  

= ~ 4 2  - 3 ~ 3 3  - 3.7411 + 6~321 - 1 5 s ~ ~ .  

3.2. The second algorithm 

The second algorithm is an improvement on the preceding one, making use of the expansion 
of the coefficients of U. = ni,(zi -z# in terms of Schur functions of z 1 , .  . . , ~ " - 1 .  One 
has to note, however, that the first algorithm does not need any specialized routine for 
handling symmetric functions and can be easily implemented with any general-purpose 
computer-algebra system. The second algorithm requires the Littlewood-Richardson rule, 
or at least Pieri's rule. 

By writing, as above, 

v." = V,"-*U" (9) 

the product is then computed by the Littlewood-Richardson rule and to obtain the expansion 
of V,* in Schur functions, one just has to apply S2, to the expansion of (9), taking into account 
formula (8). 

For example, to compute V:, one uses 

v ,2=S2-33s I ,  

and 

(10) ' 2 
(ZI - Z3) (Zz - ZP)' = Szz - 2Z3Szi 4- Z:(3Sii 9) - ?&I 4- Z:. 

Multiplying these two expressions by the LR rule (restricted to partitions of length < 2) 
yields 

v: = Z;Sz - 3Z:Sii + Z:S4 + 2:S31 - 8 ~ $ 2 2  -2Z:S3 + 4Z:Szl + S42 - 3S33 - 2Z3S41 + 423332. 
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Applying Q3 and standardizing the resulting Schur functions, one finds 

v: 342 - 3S411 + S24 + S231 - 8 S m  - b 3 3  + 4S321 + So42 - 3S033 - a 1 4 1  + 4Sl32 

= S42 - 3S411 - 3~33 - 15Szn + 6~321 
as required. 

The expansion of U, in Schur functions of the first n - 1 variables can be obtained 
directly by means of Cauchy's identity and the formula giving the dimensions of the 
irreducible representations of GL(2). Indeed, setting t = -z;I, 

"-1 "-1 

id i=l P 

U" = n(zi - 2,) - - t 2-zn n ( l  + tz$ = t2-& C S & , ( l ,  1)SP(Z1, . . . , z"-l)tlPl 

so that, taking into account the fact that a Schur function is zero when the length of the 
partition exceeds the number of variables, 

U" = S~,L'(1.1)~p(Z1.- . . .Zn-l  )(-z")2"-z-lPl (11) 
t (P 'K2 .  e@K"-l 

where p' denotes the conjugate partition of p. The general formula giving the value 
of s ~ ( 1 .  ..., 1) can be found in Macdonald (1979, ex 4, p 28). In the case where 
p' = A = (AI,  Az), the determinantal expression of SA gives 

A I  + 2  
. .  

~ This version is more complicated but saves a good deal of memory. Indeed, the number 
of monomials in U, is 3"-' but the number of non-zero terms when expressed, in Schur 
functions of ZI, . . . , znwl is only n(n + 1)/2. 

Another variant of this method uses the fact that U, = G:, where 

and performs the multiplication V:-, U, in two stages 

V,-l + V;-,G. + V;-lG,' 
the products s,e, being expanded by means of Pieri's formula (see Macdonald 1979, 
formula (5.17) p 42). 

Combinatorial identities involving sums of Schur functions indexed by shapes contained 
in a rectangle can be used to derive properties of the coefficients in equation (11). For 
example, a generating function which was conjectured by MacMahon and proved by 
Andrews (see Macdonald 1979, formula (4) p 52) shows (by putting q = -1) that the 
sum of these coefficients is zero for even values of n and (n + 1)/2 for odd values of 
n. Also, the same identity (with q = 1)  proves that the sum of their absolute values is 
n(n + l)(n + 2)/6. 

Both algorithms also work for the powers of the discriminant (with a suitable 
modification for the second algorithm, that is, the expansion of U: will use dimensions 
for GL(2k) or 2k applications of Pieri's formula). However, it is perhaps faster to compute 
higher powers from the first algorithm by use of the LR rule. The main inconvenience 
of these methods is that they can give only the complete expansion. To investigate 
the individual coefficients, one probably has to look at the q-analogue. In this case, 
the coefficients have a nice expression, although they are not amenable to practical 
computations. However, the two methods explained above can also give the complete 
expansion of the q-discriminant. 
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4. The q-discriminant 

Consider the sequence of polynomials 

One has R,(q) = (1 - q)"(z1.. .z,)D,(q), where Dn( l )  = (-ly("-1)/2V:. The Schur 
expansion of the polynomial R,(-q) gives the graded decomposition of the exterior powers 
of the adjoint representation of GL(n) and has been investigated by several authors (Stanley 
1984, Hanlon 1985, Stembridge 1987, Thibon 1990, Berenstein and Zelevinsky 1992, 
Kirillov 1992). In particular, the coefficient of the Schur function qnm) in R,(-q) is the 
Poincar6 polynomial of the unitary group V(n).  It is a classical result of Weyl (1939) that 
this polynomial is equal to 

P " ( q ) = ( l + q ) ( l + q 3 ) . " ( 1 + q ~ - ~ )  

(see Littlewood (1953) for a simple proof using symmetric functions) so that the coefficient 
of s(,-I). in v,' is equal to (-l)n(n--1)/2(2n - I)!! 

For two finite sets of variables A and B,  define the resultmt of A and B as 

R ( A ,  B )  = n ( u j  - bj).  (13) 
i. j 

If A = {ol, . . . ,u,J and B = {bl ,  . . ., bml then a formula by Chuchy (see e.g. Lascoux 
(1990) for this formulation) states that the resultant can be expressed as a super Schur 
function 

R ( A ,  B )  =+.,(A - B). (14) 

Rn(q) = S ( X " ) ( ( ~  -q)z)=cS(n") *SA( l -q )SA(z )  d5) 

With A = Z = (21,. . . , zn] and B = qZ, this gives, in h-ring notation 

A 

where * denotes the internal product of symmetric functions (corresponding to the Kronecker 
product of S. representations). That is, the decomposition coefficients are compactly 
expressed as q-specializations of Kronecker products (we recall that symmetric functions 
of the argument 1 - q can be defined by replacing each power sum pk by the polynomial 
1 - qk).  That is 

(I 

Since sP(l - q)  # 0 only when p is a hook, the symmetry of the CG numbers for S, 
shows that the problem is equivalent to finding the Kronecker product of a square character 
by a hook character. 

For those partitions h of n2 which have the special form 

A. = ((n - 1)") + p  = (pi + n  - 1 , p z f n  - 1, ..., pn + n  - 1) (16) 
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where p is a partition of n, an exact formula has been given by Stembridge (1987). In 
A-ring notation, the result can be stated as 

where, as usual; (q2; q2). = (1 - q2)(1 - q4). . . (1 - q2"), 
Using the formula (see e.g. Macdonald 1979) 

one recovers the more explicit form given in Stembridge (1987) leading to the coefficient 
g," for s, with U = (n - 2)" + p in the expansion of V ,  being given by 

For example, with n = 8, the predicted coefficients are (for the discriminant) 

- 135 135, 218295, -56700, -297675, -8820, 100800, 385875, 

-1890, 15750, -37800, -141 750, -496 125, -5670, -17640, 66 150, 

181440, 654885, -22050, -79380, -207900, -945945, 2027025 

corresponding to the partitions p. 

(8)- (7, I), (6,2), (6,1,1), (5,3), (5,2, I), (5,1, 1, I), (4.41, (4.3, 0 ,  

(4,2, 2). (4 ,2,  1, I), (4, 1, 1, 1, I), (3,3, a, (3,3, 1, I), (3,2,2, U, 
(3,2, 1 , L  1). (3, 1,1,1, 1, 0, (2?2.2,2), (2,2,2,1,1), (2,2,1,1,1,1), 

(Z1, 1, 1 , L  1, I), (1, 1,1, L1, 1 .L1)  

which have to be shifted by (6 ,6,6,6,6,6,6,6) ,  e.g. the coefficient of s127766&5 in V: is 
equal to -297 675. 

Equation (19) can lead to useful general expressions for certain types of partitions. Thus 
for partitions where p. = (n - k - 1, lk), one obtains 

g." = (-1)"(n+"/Z(-l)k+l (" + 1)!!(2n - 2k - 3)!! (20) 

More generally, the coefficient of s~ in V,"" is equal to (-l)"'n(n-l)~zcf")(l), where 

cf")(q) = (1 - q)-mn(s(mnp * sA) ( l  - mq).  

When A =  (mn - m - 1)" + p, with p a partition of n, then theorem 6.1. of Stembridge 
(1987) shows that 

Again, the symmetric functions of the argument (1 - mq) are defined by replacing each 
power sum pk by the polynomial (1 - mql'). 
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5. Symmetries of coefficients 

Dunne (1993) has noted that the coefficients g,", associated with the expansion expansion of 
V:, exhibit certain symmehies, most notably he finds that the coefficients associated with 
a partition h and what he terms the reversed partition 

( ~ } = { 2 ( n - l ) - h ~ ,  ..., 2 ( ~ - 1 ) - ~ 1 }  (22) 

are identical. An equivalent statement can be made by noting that V ,  may equally as 
well be expanded in terms of characters of the special unitary group SU, and noting that 
the coefficients of contragredient representations are identical. This leads to an additional 
check on the calculation of the coefficients for the complete expansion of V ,  since both the 
sum of the dimensions and of the second-order Dynkin index must come to zero; the latter 
giving a more stringent test than the former. The set of S-functions associated with a given 
multiplicity must be reversal invariant or, in the case of SU,, self-contragredient. 

6. Recursion relations 

Taking into account the fact that 

it follows from (9) that 

2 n . A -  A 
& + I  -gn 

and a similar argument, using the variable ZI for the recursion instead of zn+l, with the 
corresponding symmehizing operator implies as well that 

If the h are given in reverse lexicographic order then equation (23a) gives all the 
coefficients of V<#+~)Z, whose leading part is 2n, directly from those found for V,". 

7. Summary of results 

Both algorithms given in section 3 have been independently applied in the computing 
packages " R I C A t  and SCHURS to compute the expansion coefficients for up to, and 
including, N = 8 (and the second one served for computing N = 9). For the case of N = 8, 
the largest coefficient is 2027025 and the absolute sum of the complete set of expansion 
coefficients is 41 603200. It is interesting to note that for N = 7 there are 1111 distinct 
partitions in agreement with the number of admissible tableaux calculated by Di Franmsco 
et al (1993). whereas for N = 8 there are 5294 distinct partitions, eight fewer than the 

t SYMMEIR~CA is a computing package for calculating with symmetric functions and symmetric gmups. For further 
information e-mail: axel~PMm2d.mar.uN-bayreuth.de 
t SCHUR is an interactive program for calculating the properties of Lie groups and symmetric functions by Brian G 
Wyboume. distributed by S Christensen, PO Box 16175, Chapel Hill. NC 27516 USA. e-mail: stevec@wri.com 
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calculated number of admissible tableaux showing that eight of the admissible tableaux.we 
associated with zero coefficients. These partitions are 

(13, i i ,9 ,8 ,5 ,5 ,4 ,  ij ,  (11, i i , 9 ,8 ,5 ,4 ,4 , a , ( i3 ,  i i ,9 ,7 ,6 ,5 ,4 ,  I), 

(13,10,9,9,6,5,3, l), (13,10,9,8,7,5,3, l), (12,11,9,7,7,4,4,2), 

(12, 10, 10,9,6,5,3, l), (12,10, 10,7,7,5,3,2). 

For N = 9, the number of admissible pdt ions  is 26376, but there are only 26310 

The results for N = 7,8,9 are voluminous. Copies of the computer output are available 
distinct partitions involved. 

as a T m l e  distributed via e-mail (bgw@phys.uni.torun.pl). 
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